Für die Suche nach Inhalten geben Sie »Content:« vor den Suchbegriffen ein, für die Suche nach Orten geben Sie »Orte:« oder »Ort:« vor den Suchbegriffen ein. Wenn Sie nichts eingeben, wird in beiden Bereichen gesucht.

 

 

FH forscht an der Gewinnung von Solarstrom aus TextilienZoom Button

An der FH Bielefeld entwickeln Forscherinnen und Forscher eine neuartige, erstmals vollständig in Textilien integrierte Naturfarbstoff-Solarzelle. Foto: Patrick Pollmeier, FH Bielefeld, Informationen zu Creative Commons (CC) Lizenzen, für Pressemeldungen ist der Herausgeber verantwortlich, die Quelle ist der Herausgeber

FH forscht an der Gewinnung von Solarstrom aus Textilien

FH forscht an der Gewinnung von Solarstrom aus Textilien

  • Eine textile, ungiftige Farbstoffsolarzelle soll es möglich machen: Aus dem Stoff von Markisen, Sonnenschirmen, Rucksäcken oder Zelten kann Energie gewonnen werden, die zum Aufladen oder Betrieb kleinerer elektronischer Geräte genutzt werden kann. Im Projekt »SolarFlex« an der Fachhochschule Bielefeld wird daran geforscht.

Bielefeld (fhb). Mal wieder vergessen, das Smartphone zu laden? Das geht vielleicht schon bald auch unterwegs! Ob auf dem Rad, im Café oder auf dem #Campingplatz – die Möglichkeiten sind denkbar vielfältig, wenn man sich Solarzellen in einem textilen Gewebe vorstellt: zum Beispiel auf dem Rucksack, im Sonnenschirm oder im Zeltdach. Auch in Krisensituationen eine Möglichkeit, sich autark mit Strom zu versorgen.

An der Fachhochschule (FH) #Bielefeld entwickeln Forscherinnen und Forscher diese neuartige, erstmals vollständig in Textilien integrierte Naturfarbstoff-Solarzelle.

Solarzelle soll nachhaltig und kostengünstig sein

Was nach einer revolutionären Hightech-Erfindung klingt, ist der Natur nachempfunden und vor allem eins: nachhaltig. »Die Farbstoff-Solarzelle ist ungiftig, und durch die geschickte Auswahl der Bestandteile soll sie kostengünstig und später einfach recycelbar sein«, erklärt Projektleiter Marius Dotter, der zu diesem Thema an der FH Bielefeld in Kooperation mit der Universität Bielefeld promoviert. Das Projekt steht momentan noch ganz am Anfang, aber die FH greift damit einen Trend auf, der schon bald in unseren Alltag einziehen könnte.

Farbstoffsolarzellen bereits für Stand-alone-Lösungen einsetzbar

Prof. Dr. Andrea Ehrmann forscht an der FH Bielefeld seit einigen Jahren zu dem Thema und betreut Marius Dotters Doktorarbeit. Sie sieht in Farbstoffsolarzellen eine interessante Alternative zu herkömmlichen Solarzellen: »Ihre Herstellung benötigt keine Reinräume und viel weniger Energie als etwa Siliziumsolarzellen. Allerdings sind ihre aktuellen Wirkungsgrade besonders bei Nutzung preiswerter, ungiftiger Materialien sehr niedrig. Sie genügen noch nicht, um einen essentiellen Beitrag zur Energiewende zu leisten. Farbstoffsolarzellen können aber bereits jetzt für Stand-alone-Lösungen, in textiler Architektur oder auf anderen großen Flächen eingesetzt werden. Dies kann sinnvoller und umweltschonender sein als der Einsatz herkömmlicher siliziumbasierter Zellen.«

QGrätzel-Zellen«: Stromkreislauf dank Sonnenlicht

Farbstoffsolarzellen, in der Fachwelt auch nach ihrem Erfinder Michael Grätzel als Grätzel-Zellen bekannt, sind dem photoelektrischen Effekt nachempfunden: Sie wandeln Licht in elektrische Energie um. Der Farbstoff absorbiert #Licht, dadurch »löst sich« ein Elektron – ein Stromkreislauf entsteht.

Die Zellen bestehen aus zwei leitfähigen Elektroden, von denen mindestens eine durchsichtig sein muss, um Licht in die Zelle eindringen zu lassen. Dazu wird meist Glas als Trägermaterial genutzt. Die Frontelektrode, die dem Sonnenlicht ausgesetzt ist, wird mit einem Halbleiter, typischerweise Titandioxid, beschichtet. Darauf wiederum wird der Farbstoff abgelagert. Die Farbstoffmoleküle absorbieren das Licht und regen so Elektronen im Farbstoff an, die in das Leitungsband des Halbleiters ‚wandern‘. Durch den Halbleiter und die Frontelektrode gelangen die Elektronen in einen äußeren Kreislauf, wo sie die Energie abgeben können. Den Wiedereintritt in die Solarzelle über die Gegenelektrode unterstützt eine Platin- oder Graphitschicht als Katalysator. Mit der Rückkehr des Elektrons in den Farbstoff wird der Kreislauf geschlossen. Der Farbstoff kann dann wieder erneut Licht absorbieren und in Energie umwandeln.

Das gleiche Prinzip will man an der FH Bielefeld nutzen – aber ohne Glas, dafür in Textil und mit ausschließlich ungiftigen Materialien.

Energie aus Früchtetee

In dem Projekt der FH Bielefeld setzen die #Experten auf den Naturfarbstoff Anthocyan und den Halbleiter Titandioxid als Licht-Absorber. Anthocyane können aus Pflanzen einfach gelöst werden, quasi wie bei einem Tee. »Wir haben eine Zeit lang mit Waldbeertee gearbeitet. Mittlerweile verwenden wir Hibiskusblüten und als Lösungsmittel einen Mix aus Wasser und Ethanol oder das organische Lösungsmittel Dimethylsulfoxid«, erklärt Marius Dotter. Als Katalysator nutzen sie Graphit. »Da reicht uns schon ein wenig Abrieb vom Bleistift«, so Dotter. Ein Iod-Kaliumiodid-Mix kommt als Elektrolyt zum Einsatz.

Die Solarzelle in Textilform bringen

Doch wie bekommt man nun diese Bestandteile für eine Farbstoffsolarzelle in der passenden Form auf Textil? Und wie wird der Strom von dem Textil abgeleitet, um zum Beispiel einen Handy-Akku zu laden? Marius Dotter erklärt: »Zunächst haben wir eine textile Trägerschicht. Die sieht auf den ersten Blick aus wie ein normales Geschirrtuch aus der Küche. Bei genauerem Hinsehen erkennt man silbrige Streifen: Hier sind Metallfäden verwebt, die später die Elektronen leiten sollen.« Auf dieses Tuch sollen nun die verschiedenen Schichten aufgebracht werden.

Elektrospinnanlage produziert Fasern

Allerdings liegen die einzelnen Komponenten im Regelfall als gelöste Flüssigkeit oder Gele vor und sollen auf die textile Oberfläche aufgebracht werden. An dieser Stelle kommt die Elektrospinnanlage ins Spiel: Das Gerät befindet sich in der FH Bielefeld und gehört zur Arbeitsgruppe Textile Technologien. Elektrospinnen bedeutet, dass eine Lösung der gewünschten Mischung, zum Beispiel der Farbstoff zusammen mit Titandioxid und X-PAN, durch eine Hochspannung angezogen wird und sich an dem Trägermaterial in zufälliger Orientierung als Fasern anlagert. So entsteht aus dem ‚Küchentuch‘ ein Nanofaser-Vlies. Zusammen mit dem Gel-Elektrolyten, der aufgedruckt wird, sollen so alle Bestandteile in der Zelle zu großflächigen textilen Solarzellschaltungen kombiniert werden

»Genau an der Stelle laufen momentan unsere Untersuchungen. Wir möchten herausfinden, welche Kombination der Materialien am besten funktioniert«, so der Projektleiter. Nach den ersten Tests in der Elektrospinnanlage, bei denen Graphit, Anthocyane und Titandioxid aufgetragen wurden, ist Marius Dotter schon sehr zufrieden: »Es fühlt sich noch nicht wie Textil an, aber das Prinzip funktioniert gut. Die nächsten zwei Jahre werden zeigen, wie eine ideale Zusammensetzung aussehen könnte.«

Und wie kommt am Ende der Strom in den Akku? »Die Metallfäden in dem Tuch, das als Trägermaterial dient, sollen den Strom in ein Kabel ableiten, an das man dann beispielsweise den Akku anschließen kann«, so Dotter.

Wie viel Energie die Zellen produzieren werden, hängt letztendlich von der Fläche und Anzahl der Zellen ab sowie von der Einstrahlung. »Unser Ziel ist, dass wir mit einem Quadratmeter Photovoltaik-Textil an einem durchschnittlichen Tag in Deutschland drei Smartphone-Akkus laden können. Genauere Werte werden wir erst gegen Ende des Projekts ermitteln können«, erklärt Dotter.

Wichtig ist ihm, dass sich die Materialien auch wirklich wie Textilien anfühlen, die man bei der jeweiligen Nutzung erwartet, und dass sie langlebig sind. Und wird das Zelt, der Rucksack oder die Markise doch zu sehr in Mitleidenschaft gezogen, kann das Material recycelt werden. Giftige Stoffe fallen dabei nicht an, wie Dotter erklärt: »Unser Ziel ist, dass man die Materialien bedenkenlos nutzen und auch wiederverwerten kann.«

Content bei Gütsel Online …

 
Gütsel
Termine und Events

Veranstaltungen
nicht nur in Gütersloh und Umgebung

November 2024
So Mo Di Mi Do Fr Sa
12
3456789
10111213141516
17181920212223
24252627282930
Dezember 2024
So Mo Di Mi Do Fr Sa
1234567
891011121314
15161718192021
22232425262728
293031
Februar 2025
So Mo Di Mi Do Fr Sa
1
2345678
9101112131415
16171819202122
232425262728
September 2025
So Mo Di Mi Do Fr Sa
123456
78910111213
14151617181920
21222324252627
282930
November 2025
So Mo Di Mi Do Fr Sa
1
2345678
9101112131415
16171819202122
23242526272829
30
Dezember 2025
So Mo Di Mi Do Fr Sa
123456
78910111213
14151617181920
21222324252627
28293031
Februar 2026
So Mo Di Mi Do Fr Sa
1234567
891011121314
15161718192021
22232425262728
September 2026
So Mo Di Mi Do Fr Sa
12345
6789101112
13141516171819
20212223242526
27282930
Oktober 2026
So Mo Di Mi Do Fr Sa
123
45678910
11121314151617
18192021222324
25262728293031
November 2042
So Mo Di Mi Do Fr Sa
1
2345678
9101112131415
16171819202122
23242526272829
30