Für die Suche nach Inhalten geben Sie »Content:« vor den Suchbegriffen ein, für die Suche nach Orten geben Sie »Orte:« oder »Ort:« vor den Suchbegriffen ein. Wenn Sie nichts eingeben, wird in beiden Bereichen gesucht.

 

 

Bildverarbeitung 2.0 für künstliche Bestäubung, Software der Pennsylvania State University erkennt Blüten, die den meisten Ertrag versprechenZoom Button

Apfelblüten im Original und in der Bildverarbeitung durch Künstliche Intelligenz. Bild: Pennsylvania State University, Informationen zu Creative Commons (CC) Lizenzen, für Pressemeldungen ist der Herausgeber verantwortlich, die Quelle ist der Herausgeber

Bildverarbeitung 2.0 für künstliche Bestäubung, Software der Pennsylvania State University erkennt Blüten, die den meisten Ertrag versprechen

Bildverarbeitung 2.0 für künstliche Bestäubung, Software der Pennsylvania State University erkennt Blüten, die den meisten Ertrag versprechen

State College, 30. Januar 2023

Forscher der Pennsylvania State University erleichtern die künstliche #Bestäubung von #Nutzpflanzen in Zeiten des grassierenden Insektensterbens mit einem neuen Bildverarbeitungssystem, das die #Königsblume eindeutig identifiziert. Dies ist die mittlere Blüte eines Straußes von fünf Blüten an Apfelbäumen, die sich als erste öffnet. Wird sie bestäubt, entsteht daraus der mit Abstand größte #Apfel.

Hunderte Blütenfotos als Basis

Doktorand Xinyang Mu setzt »Mask R CNN« ein. Das #Deep #Learning Computerprogramm führt eine Segmentierung auf Pixelebene durch, um Objekte zu erkennen, die teilweise verdeckt sind – so wie die Königsblume von den übrigen Knospen oder Blüten. Mu hat Hunderte von Apfelblütentrauben fotografiert und daraus einen Algorithmus entwickelt, der die Königsblume von den übrigen Blüten unterscheiden und eindeutig lokalisieren kann. Mit dieser Info kann ein Bestäubungsroboter gezielt vorgehen, sodass sich die jeweils größte Frucht entwickelt.

Mu ließ 2014 Apfelbäume der Sorten Gala und Honeycrisp in Abständen von gut 1,50 beziehungsweise knapp zwei Metern pflanzen. Als sie eine Höhe von fast vier Metern erreicht hatten und blühten, begann der Jungforscher mit seiner Fotoaktion. Die #Kamera montierte er auf Klein #Lkw, den er zwischen den Baumreihen fahren ließ, um die Blütenbilder aufzunehmen. Dann trainierte er seine #Software, damit sie die entscheidende Blüte erkennen konnte.

Trefferquote bei rund 98,7 Prozent

Das Training des #Bildverarbeitungssystems zur Lokalisierung von Königsblumen sei eine große Herausforderung gewesen, da sie die gleiche Größe, Farbe und Form wie die seitlichen Blüten haben und die Königsblumen aufgrund ihrer zentralen Position normalerweise von den umgebenden Blüten verdeckt werden. Das Programm drillte er jeweils darauf, das Zentrum eines Blütenbüschels zu lokalisieren. Er erreichte eine Trefferquote von bis zu 98,7 Prozent, verglichen mit den 100 Prozent, die bei der Identifizierung der Königsblumen durch menschlichen Augenschein erreicht wurden.

Pennsylvania State University

Content bei Gütsel Online …

 
Gütsel
Termine und Events

Veranstaltungen
nicht nur in Gütersloh und Umgebung

Februar 2025
So Mo Di Mi Do Fr Sa
1
2345678
9101112131415
16171819202122
232425262728
September 2025
So Mo Di Mi Do Fr Sa
123456
78910111213
14151617181920
21222324252627
282930
November 2025
So Mo Di Mi Do Fr Sa
1
2345678
9101112131415
16171819202122
23242526272829
30
Dezember 2025
So Mo Di Mi Do Fr Sa
123456
78910111213
14151617181920
21222324252627
28293031
Februar 2026
So Mo Di Mi Do Fr Sa
1234567
891011121314
15161718192021
22232425262728
September 2026
So Mo Di Mi Do Fr Sa
12345
6789101112
13141516171819
20212223242526
27282930
Oktober 2026
So Mo Di Mi Do Fr Sa
123
45678910
11121314151617
18192021222324
25262728293031
November 2042
So Mo Di Mi Do Fr Sa
1
2345678
9101112131415
16171819202122
23242526272829
30